BrightS⊕urceEnergy[™]

Technology Overview

January 2009

BrightSource Energy Snapshot

Mission: To design, develop and operate the world's most cost-effective and reliable large-scale solar energy projects

Business:

- Develop and build large-scale solar power generation plants for utilities at prices that compete with fossil-fuel plants, using proprietary technology
- Develop and build solar-to-steam plants for industrial applications
- Financial Strength:
 - Over \$160M in corporate financing from key strategic investors including: VantagePoint Venture Partners, Morgan Stanley, Google.org, BP Alternative Energy, StatoilHydro Ventures, Chevron Technology Ventures, Black River, Draper Fisher Jurvetson, and DBL Investors (a spin-off from JP Morgan), and others

> Team:

- Includes all of the key senior managers of Luz International, which designed and built more than 350 MW of solar thermal plants built in the 1980's
- World class project development team with over 20GW of power projects developed, constructed, and managed

Locations:

- Headquarters in Oakland, California, 30 full-time employees
- Subsidiary BrightSource Industries (Israel) located in Jerusalem, 90 full-time employees
- 2 BrightSourceEnergy

BrightSource Energy - Significant Accomplishments

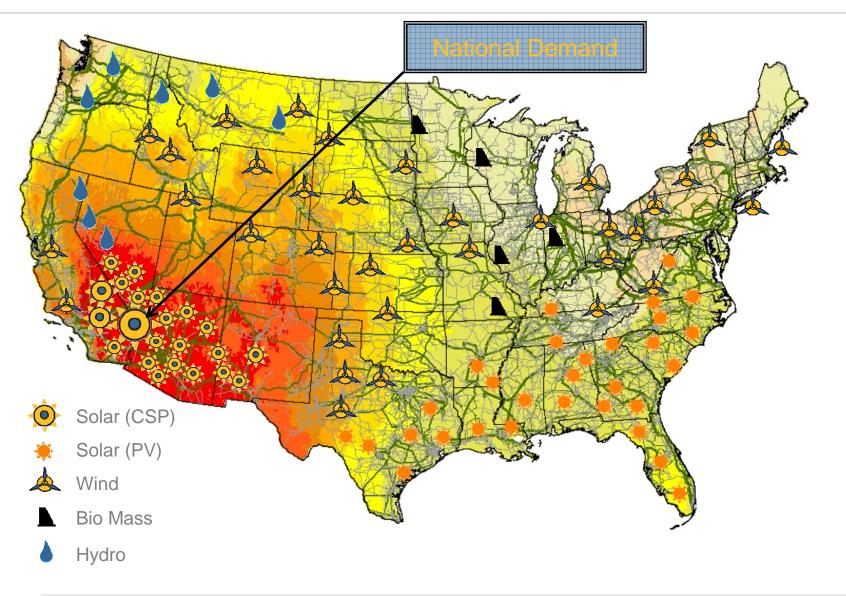
- Raised \$160 million equity
- Signed 900MW PPA with PG&E
- Launched 6MW Solar Energy Development Center in Israel
- Generated Super Heated Steam (550^c) with proprietary technology
- Developing 4.2GW in southwest U.S.

BrightS@urceEnergy

Market Drivers

Energy Independence

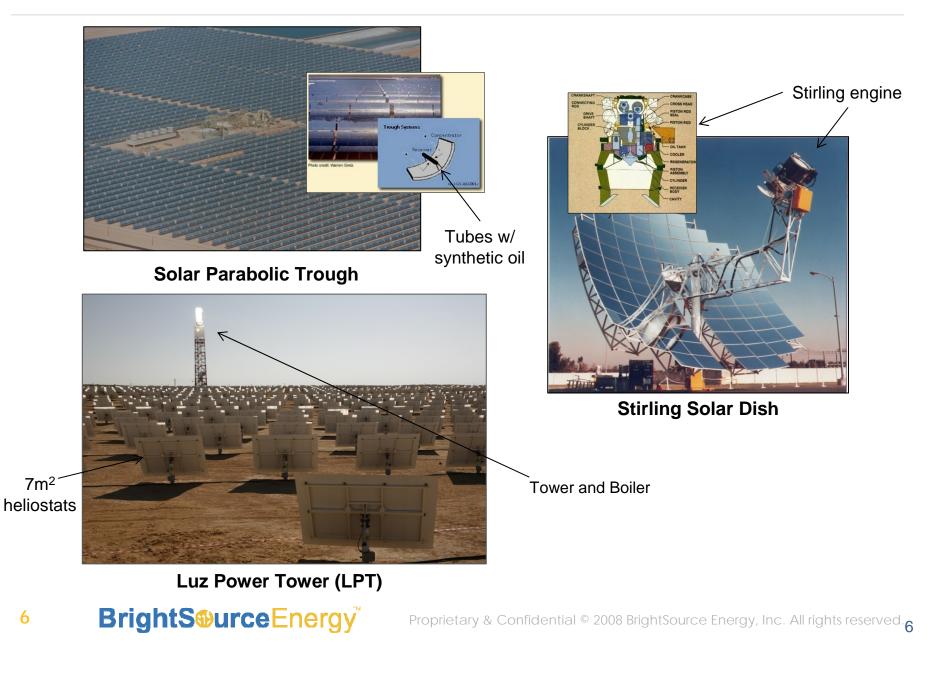
- Every day the U.S.
 - Needs 20M barrels of oil to make up for production shortfall
 - Borrows \$2B from overseas countries
 - Pays \$2B to international countries
 - Consumes every barrel of oil that it bought, nothing is left over

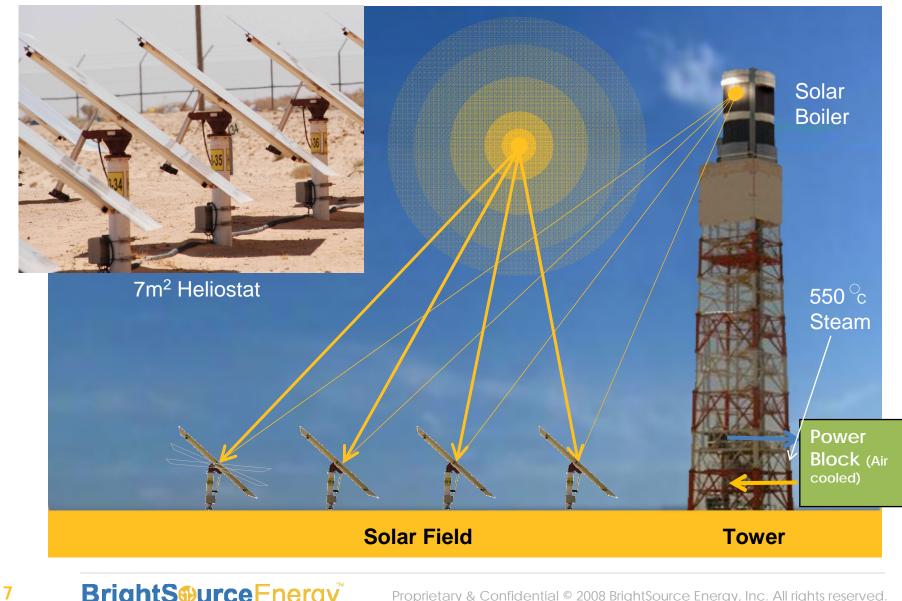

Rising Global Electricity Demand

 Projected to increase by 50 percent from 2005 to 2030 – more if plug-in electrical cars replace gasoline-powered cars

Climate Change

- To reduce CO2 to 450ppm
 - Replace 15,000 GW (included trans) of worldwide energy demand
 - 42,300 new 1GW energy plants needed by 2050 with vehicle electrification to hit GHG reduction targets
 - \$105 Trillion dollars of investment in CO2-free generation
- 4 BrightS@urceEnergy


Integrated Renewables Strategy to Meet U.S. Demand


BrightS@urceEnergy

5

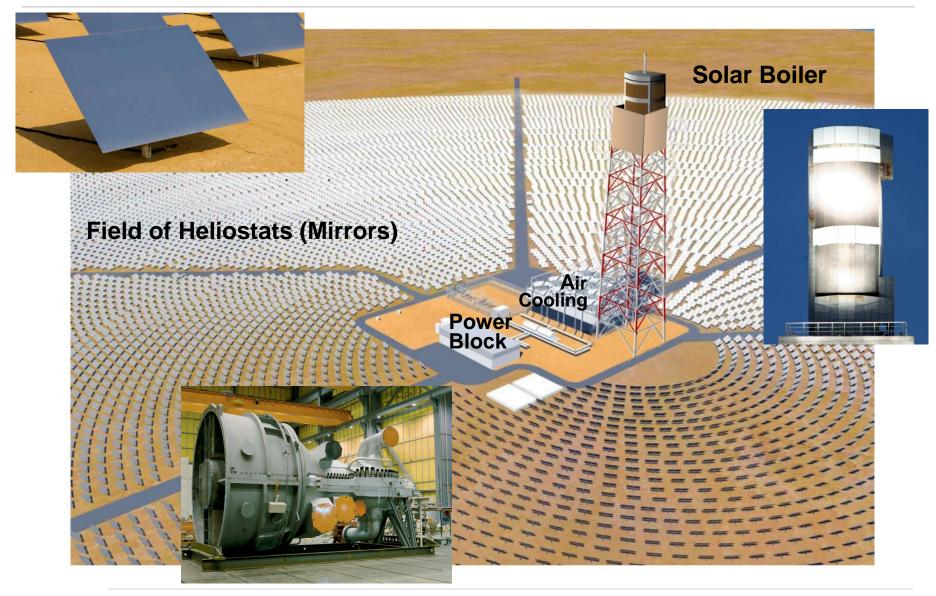
Principal Solar Thermal Technologies

Luz Power Towers (LPT 550)

BrightS@urceEnergy

Technology & Design Philosophy

Compete with conventional power production


- Reach higher solar to thermal and thermal to electricity efficiencies
- Follow global technology trends to minimize costs: use standard available materials; leverage modern computer design & control technologies; minimization of concrete/steel used in construction

BrightSource Solution – LPT 550

- Proven Technology
- Direct Solar-to-Steam
- ➢ Higher Temp. 550⁰ C
- Lower Capital Cost
- Low Parasitic Load
- Higher Operating Efficiency
- Uses Commodity Materials:
 - Flat Glass
 - Minimum Concrete
 - Minimum Steel
- Air Cooled Power Block

LPT Plant Components

11 BrightS@urceEnergy

Advantages of LPT Technology

Greater thermal efficiency

- Ability to track the sun on two axes rather than one
- Elimination of heat transfer fluid as an intermediate step

Greater electrical efficiency

- Higher concentration ratio (>400x vs. 30x for trough) enables production of higher temperature steam
- Higher temperature steam results in higher turbine efficiency

Lower parasitic losses

- Less than 1/10th as much piping vs. trough
- Piping of steam vs. piping of viscous heat transfer fluid
- 12 BrightSourceEnergy

Advantages of LPT Technology

Lower capital costs

- Flat mirrors are cheaper than curved mirrors
- Small profile heliostats require less strength/steel to resist wind than large troughs
- More site flexibility
 - Towers can be built on land with >5% slope (N-S or E-W); troughs require <1/2% N-S and <3% E-W slopes
- Greater natural resource efficiency
 - Dry cooling vs. wet cooling uses 1/10th the water

Performance Comparison: LPT vs. Troughs

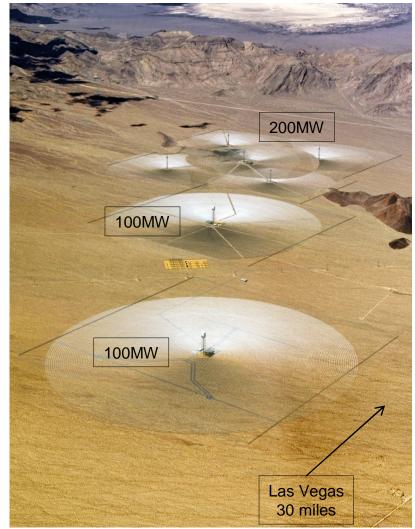
Factor	SEGS VI (Trough)	Optimum Trough	LPT 550	LPT 650 *
Temperature (°C)	370 ⁰	400 ⁰	550 ⁰	650 ⁰
Solar to Thermal Efficiency	35%	40%	50%	50%
Gross Thermal to Electrical Efficiency	37%	39%	43%	46%
Parasitic Power	14%	12%	5%	6%
Solar to Electrical Efficiency	11%	14%	20%	22%
Relative Cost Per kWh	100%	90%	70%	63%

* Future version of LPT 550, operating at 650° C

14 BrightS@urceEnergy

SEDC Demonstration Facility

- Location: Negev Desert, Israel
- In operation since June 2008
- Heliostats Reflecting Area: ~ 12,000m²
- Number of Heliostats: ~1600
- Heliostat Dimensions: 2.25m x 3.2m
- Reflecting area per Heliostat: 7.2m²
- Distance between rows of Heliostats: 4.2m 10m
- Tower Height: 60m (+ 15m Receiver)
- Thermal Energy on receiver: 6 MWth
- 15 BrightS@urceEnergy


BrightSource's Announced Development Sites

SITE	ACRES	MW	Status
Ivanpah, CA	3,900	400	CAISO 2 nd of 3 step process completed; Awaiting CEC Preliminary Staff Assessment; applied to BLM for Right of Way
Broadwell Lake, CA	10,000	800	CAISO 2 nd step completed: 3 rd step for detailed cost estimate underway; BLM SF 299 filed
Siberia, CA	16,000	400	CAISO – waiting for 2 nd step to be completed – expected by end of year; BLM SF 299 filed
Mormon Mesa, NV	15,000	2,000	Nevada Power completed feasibility studies; Next step being initiated; BLM SF2 299 filed
Mesquite Valley, CA	17,000	600	Studying requirements Site recommended by BLM
GRAND TOTALS	61,900	4,200	
Confidential	60	N/A	Solar-to-steam Demo Plant

BrightS urce Energy

Ivanpah Solar Power Complex – 400 MW Site

- ➢ 300MW PG&E PPA in place
- ➤ 100MW in advanced negotiations
- 123MW Siemens turbine purchased
- CEC and BLM permitting scheduled approval for Nov 2009
- Accessible Transmission
- Initial construction scheduled for late 2009
- Ist Plant COD scheduled for late 2011
- EPC and Boiler contracts under negotiations

BrightSource Energy Advantage

Superior solar technology:

- Based on proven power tower approach
- Lower cost and higher efficiency than competing solar technologies

Strong management team:

- Includes all of the key senior managers of Luz International, which designed and built more than 350 MW of solar thermal plants built in the 1980's
- World class project development team with over 20GW of power projects developed, constructed, and managed

Solid financial backing:

- Over \$160M in corporate financing from key financial and strategic investors including: VantagePoint Venture Partners, Morgan Stanley, Black River, Draper Fisher Jurvetson, DBL Investors (a spin-off from JP Morgan), Google, BP Alternative Energy, StatoilHydro Ventures, Chevron Technology Ventures, and others
- Non-recourse credit line for funding project and site development activities

Advanced business activities:

- Solar Energy Development Center operational in Israel
- Signed largest solar power contract ever made 900MW with Pacific Gas & Electric
- In detailed negotiations with other major utilities for additional PPAs
- Actively developing sites for more than 4GW of solar thermal generating capacity
- First project, Ivanpah 400MW Solar Power Complex, is well advanced with construction scheduled to start in 2009
- 18 BrightSourceEnergy

BrightS@urceEnergy[™]

1999 Harrison St. Suite 2150 Oakland, CA 94602 (510) 550 8165